Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(μ-Oxalato- $O^{1}, O^{2}: O^{1^{\prime}}, O^{2^{\prime}}$)bis[aqua(diethylenetriamine)nickel(II)] bis(hexafluorophosphate) dihydrate

Iñaki Muga, Pablo Vitoria, Juan M. Gutiérrez-Zorrilla,* Antonio Luque, Carmen Guzmán-Miralles and Pascual Román

Departamento de Química Inorgánica, Facultad de Ciencias, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao, Spain
Correspondence e-mail: qipguloj@lg.ehu.es

Received 3 October 2001
Accepted 8 November 2001
Online 16 January 2002
The title compound, $\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$-$2 \mathrm{H}_{2} \mathrm{O}$, contains a dinuclear oxalato-bridged nickel(II) complex cation. The structure determination reveals the presence of a centrosymmetric binuclear complex where the oxalate ligand is coordinated in a bis-bidentate mode to the Ni atoms. The distorted octahedral environment of each Ni atom is completed by the three N atoms of the diethylenetriamine ligand in a fac arrangement and by one O atom from a water molecule. $\mathrm{PF}_{6}{ }^{-}$acts as counter-anion. A two-dimensional network of hydrogen bonds links the cations and anions and stabilizes the structure.

Comment

The design and synthesis of molecular magnetic compounds has attracted increased attention over the past two decades (Gatteschi et al., 1991; Bruce \& O’Hare, 1992). A significant amount of magneto-structural research work during the last 25 years has been devoted to analysing the remarkable ability of the oxalate bridge to mediate exchange coupling between first-row transition metal ions (Alvarez et al., 1990; Cano et al., 1999). The simple binuclear geometry involving symmetric inplane bridging with a single oxalate anion binding through two O atoms to each of two metal centres has been observed in the chemistry of nickel (Alcock et al., 1987; Battaglia et al., 1988; Bencini et al., 1990; Castro et al., 1997; Travnicek et al., 1997), and these O-bridged $\mathrm{Ni}^{\mathrm{II}}$ complexes have attracted much attention due to the strong magneto-structural correlations found in these compounds (Khan, 1993).

Despite these exhaustive studies, dimeric structures are predominant in the solid-state chemistry of μ-oxalate $\mathrm{Ni}^{\mathrm{II}}$ complexes and only in recent years have infinitely extended networks based on transition metal oxalate complexes been reported (Decurtins et al., 1996).

Compounds containing the $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu \text {-ox })\right]^{2+}$ cation (dien is diethylenetriamine and ox is oxalate) are
known as the dichloride, $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu\right.$-ox $\left.)\right] \mathrm{Cl}_{2}$ (Román et al., 1996), dibromide, $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu\right.$-ox $\left.)\right] \mathrm{Br}_{2}$ (Muga, 2001), diperchlorate monohydrate, $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2^{-}}\right.$ (μ-ox $)]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (Travnicek et al., 1997), and dinitrate, $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu\right.$-ox $\left.)\right]\left(\mathrm{NO}_{3}\right)_{2}$ (Guzmán et al., 2001).

We report here the synthesis and crystal structure of $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu\right.$-ox $\left.)\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I). This compound was obtained starting from $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu\right.$-ox $\left.)\right] \mathrm{Cl}_{2}$ by exchanging Cl^{-}for $\mathrm{PF}_{6}{ }^{-}$. Analogous to $\left[\left\{\mathrm{Ni}(\text { dien })\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}(\mu-\right.$ ox) $] \mathrm{Cl}_{2}$, the title compound can be used as a precursor in the synthesis of other derivatives owing to the extreme lability of its water molecules (Román et al., 1996; Muga et al., 1997; Muga et al., 2000).

(I)

The asymmetric unit of (I) consists of a non-coordinated hexafluorophosphate ion, a water molecule, and half of a $\left[\mathrm{Ni}_{2}(\text { dien })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mu \text {-ox })\right]^{2+}$ dinuclear cation, which has an inversion centre at the midpoint of the $\mathrm{C}-\mathrm{C}$ bond of the oxalate bridge. The oxalate ligand joins two adjacent Ni coordination polyhedra, with its O atoms occupying two cis equatorial positions, and the dien ligand acts as a facially coordinated tridentate ligand.

The coordination geometry around each metal ion is distorted $\mathrm{NiN}_{3} \mathrm{O}_{3}$ octahedral. The equatorial plane is built by two O atoms from opposite ends of the oxalate ligand, and the terminal N atoms, N 1 and N 7 , from the dien ligand, whereas the axial positions are occupied by a water molecule, $\mathrm{O} 3 w$, and the central N 4 atom from the dien ligand.

The values of the $\mathrm{Ni}-\mathrm{N}$ bond lengths are in the range 2.068 (3) -2.080 (3) \AA. The $\mathrm{Ni}-\mathrm{O}$ (ox) bonds are also very similar (Table 1) and subtend an acute angle at Ni1 of $79.45(9)^{\circ}$. The $\mathrm{Ni}-\mathrm{O} 3 w$ axial bond is almost perpendicular, $87.55(11)^{\circ}$, to the mean O1/O2/N1/N7 equatorial plane. The metal atom is displaced by 0.043 (1) \AA from this plane in the direction of the water ligand.

The bridging oxalate anion is exactly planar, and the nickel(II) ion is 0.066 (1) \AA out of this plane. The dihedral angle between the equatorial $\left(\mathrm{N}_{2} \mathrm{O}_{2}\right)$ and oxalate mean planes is $4.23(11)^{\circ}$. The intramolecular $\mathrm{Ni} \cdots \mathrm{Ni}$ distance is 5.4579 (11) \AA, whereas the shortest intermolecular $\mathrm{Ni} \cdots \mathrm{Ni}$ separation is 5.1542 (6) \AA.

One of the C atoms (C 2) of the dien ligand is disordered over two unequally occupied positions, $\mathrm{C} 2 A$ and $\mathrm{C} 2 B$. The conformations of the two chelate rings within the dien ligand can be analysed in terms of the positions of the C atoms relative to the $\mathrm{N} / \mathrm{Ni} / \mathrm{N}$ planes of each five-membered chelate ring. The two rings show an asymmetric distribution of the C atoms. Whereas one C atom is above and one below the $\mathrm{N} / \mathrm{Ni} / \mathrm{N}$ plane in the minor disordered form of the first ring and in the second ring, they are located on the same side of the plane in the major disordered form of the first ring. Consid-

Figure 1

ORTEP-3 (Farrugia, 1997) view of the complex cation, the water molecule and the hexafluorophosphate anion, shown with 50% probability displacement ellipsoids. Ethylene H atoms have been omitted for clarity. Only the major disordered form is shown.

Figure 2
Packing diagram viewed down the b axis, showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network. H atoms have been omitted for clarity.
ering only the major disordered form of the complex, the two chelate rings adopt the λ configuration, while the chelate ring spanned by atoms Ni1, N1, C2B, C3 and N4 adopts the δ configuration (Zelewsky, 1996).

The crystal structure consists of corrugated layers of complex cations hydrogen bonded by the water molecules, which lie parallel to the (100) plane. Inside the layer, the hydration and coordinated water molecules give rise to $\cdots \mathrm{O} 3 w \cdots \mathrm{O} 4 w \cdots \mathrm{O} 3 w\left(\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z\right) \cdots$ hydrogenbonded chains, in which they act alternatively as donor and acceptor atoms. Besides these, longer hydrogen bonds are formed between the $\mathrm{O} 4 w$ water molecules and both O atoms of an adjacent oxalate moiety $\left[\mathrm{O} 1(x, y-1, z)\right.$ and $\mathrm{O} 2\left(\frac{1}{2}-x\right.$, $\left.\left.-\frac{1}{2}-y, 1-z\right)\right]$ in a direction perpendicular to the abovementioned chains.

The $\mathrm{PF}_{6}{ }^{-}$anions are located above and below each dinuclear complex, forming two hydrogen bonds that connect

Figure 3
Correlation diagram between the interlamellar distances (\AA) and the anionic radii (A).
$\mathrm{N} 4\left(\frac{1}{2}-x, \frac{1}{2}-y, 1-z\right)$ and $\mathrm{O} 3 w$ with the F4 atom. They also contribute to the crystal packing by forming three additional $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds that bridge between neighbouring complex cations [N. 3.106 (6)-3.256 (7) Å] (Fig. 2).

A remarkable aspect of the salts containing this binuclear complex cation is the different degree of hydration which gets higher as the anion becomes larger. All salts present a twodimensional hydrogen-bonded arrangement, but the details of the hydrogen-bonding network inside these layers are strongly dependent on the anion and the number of water molecules. As can be seen in Fig. 3, the interlamellar distance, $d_{i \mathrm{i}}$, is strongly dependent on the anionic radius (Jenkins et al., 1999), with a correlation factor of 0.975 for the five compounds.

Experimental

To an aqueous solution (50 ml) of $\left[\left\{\mathrm{Ni}(\text { dien }) \mathrm{H}_{2} \mathrm{O}\right\}_{2}(\mu\right.$-ox $\left.)\right] \mathrm{Cl}_{2}$ (Román et al., 1996; $0.5 \mathrm{~g}, 1.0 \mathrm{mmol}$), an aqueous solution (20 ml) of $\mathrm{AgPF}_{6}(0.5 \mathrm{~g}, 2 \mathrm{mmol})$ was added slowly with continuous stirring. The mixture was stirred for 10 min . A highly insoluble grey residue precipitated during the reaction. After filtration, the resulting blue solution was allowed to stand at room temperature for several days, resulting in blue prismatic crystals of the complex. The crystals were collected, washed with cool water, and air dried. Single crystals were obtained by recrystallization from an aqueous solution (yield $>95 \%$).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Ni}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)_{2}-\right.} \\
& \left.\quad\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=773.79 \\
& \text { Monoclinic, } C 2 / c \\
& a=22.994(3) \AA \\
& b=7.1850(10) \AA \\
& c=16.806(3) \AA \\
& \beta=98.860(10)^{\circ} \\
& V=2743.4(7) \AA^{3} \\
& Z=4 \\
& D_{x}=1.873 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

[^0]Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Ni1-N7	$2.068(3)$	$\mathrm{Ni} 1-\mathrm{O} 1$	$2.100(2)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.074(3)$	$\mathrm{Ni} 1-\mathrm{O} 3 w$	$2.102(3)$
$\mathrm{Ni} 1-\mathrm{N} 4$	$2.080(3)$	$\mathrm{Ni} 1-\mathrm{O} 2$	$2.111(2)$
N7-Ni1-N1	$101.84(13)$	$\mathrm{N} 7-\mathrm{Ni} 1-\mathrm{O} 2$	$90.42(11)$
$\mathrm{N} 7-\mathrm{Ni} 1-\mathrm{N} 4$	$83.67(13)$	$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$166.94(12)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 4$	$83.52(13)$	$\mathrm{N} 4-\mathrm{Ni} 1-\mathrm{O} 2$	$93.51(12)$
$\mathrm{N} 7-\mathrm{Ni} 1-\mathrm{O} 1$	$169.86(11)$	$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$79.45(9)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 1$	$88.27(11)$	$\mathrm{O} 3 w-\mathrm{Ni} 1-\mathrm{O} 2$	$91.13(13)$
$\mathrm{N} 4-\mathrm{Ni} 1-\mathrm{O} 1$	$96.98(11)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2^{\mathrm{i}}$	$125.5(3)$
$\mathrm{N} 7-\mathrm{Ni} 1-\mathrm{O} 3 w$	$92.40(12)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$116.9(3)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{O} 3 w$	$92.81(14)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$117.6(3)$
$\mathrm{N} 4-\mathrm{Ni} 1-\mathrm{O} 3 w$	$173.94(12)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ni} 1$	$113.35(19)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 3 w$	$87.70(11)$	$\mathrm{C} 1^{\mathrm{i}}-\mathrm{O} 2-\mathrm{Ni} 1$	$112.63(19)$

Symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.

Data collection

Enraf-Nonius CAD-4
diffractometer

$\omega / 2 \theta$ scans

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.605, T_{\text {max }}=0.799$
4099 measured reflections
3969 independent reflections 3370 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1249 P)^{2}\right. \\
& \quad+5.9096 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.34 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-1.40 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 w-\mathrm{H} 31 w \cdots \mathrm{~F} 4$	$0.82(4)$	$2.11(3)$	$2.926(6)$	$168.9(17)$
$\mathrm{O} 3 w-\mathrm{H} 32 w \cdots \mathrm{O} 4 w$	$0.84(4)$	$1.79(4)$	$2.628(5)$	$175.5(18)$
$\mathrm{O} 4 w-\mathrm{H} 41 w \cdots \mathrm{O} 3 w^{\mathrm{i}}$	$0.72(4)$	$2.14(5)$	$2.840(5)$	$165(4)$
$\mathrm{O} 4 w-\mathrm{H} 42 w \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.76(4)$	$2.47(3)$	$3.131(5)$	$147(4)$
$\mathrm{O} 4 w-\mathrm{H} 42 w \cdots 2^{\mathrm{iii}}$	$0.76(4)$	$2.30(5)$	$3.019(4)$	$158(3)$
$\mathrm{N} 1-\mathrm{H} 11 A \cdots \mathrm{O} 4 w^{\text {iv }}$	0.90	2.42	$3.163(5)$	140
$\mathrm{~N} 1-\mathrm{H} 12 A \cdots \mathrm{~F}^{\mathrm{i}}$	0.90	2.45	$3.256(7)$	150
$\mathrm{~N} 1-\mathrm{H} 12 B \cdots \mathrm{~F}^{\mathrm{i}}$	0.90	2.49	$3.256(7)$	143
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{~F}^{\mathrm{v}}$	0.90	2.28	$3.187(7)$	174
$\mathrm{~N} 7-\mathrm{H} 71 \cdots \mathrm{Fs}^{\mathrm{i}}$	0.90	2.25	$3.106(6)$	158
$\mathrm{~N} 7-\mathrm{H} 72 \cdots \mathrm{O}^{\text {iii }}$	0.90	2.43	$3.285(4)$	159
Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (ii) $x, y-1, z ;$ (iii) $\frac{1}{2}-x,-\frac{1}{2}-y, 1-z$; (iv)				
$\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (v) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.				

Supplementary data for this paper are available from the IUCr electronic archives (Reference: LN1124). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W., Moore, P. \& Omar, H. A. A. (1987). Acta Cryst. C43, 2074-2076.
Alvarez, S., Julve, M. \& Verdaguer, M. (1990). Inorg. Chem. 29, 4500-4507.
Battaglia, L. P., Bianchi, A., Corradi, A. B., Garcia-España, E., Micheloni, M. \& Julve, M. (1988). Inorg. Chem. 27, 4174-4179.
Bencini, A., Bianchi, A., Garcia-España, E., Jeannin, Y., Julve, M., Marcelino, B. V. \& Philoche-Levisalles, B. M. (1990). Inorg. Chem. 29, 963-970.

Beurskens, P. T., Beurskens, G., Bosman, W. P., de Gelder, R., García-Granda, S., Gould, R. O., Israel, R. \& Smits, J. M. M. (1996). DIRDIF96. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Bruce, Q. W. \& O’Hare, D. (1992). Editors. Inorganic Materials. Chichester: Wiley.
Cano, J., Ruiz, E., Alemany, P., Lloret, F. \& Alvarez, S. (1999). J. Chem. Soc. Dalton Trans. pp. 1669-1676.
Castro, I., Calatayud, M. L., Sletten, J., Lloret, F. \& Julve, M. (1997). J. Chem. Soc. Dalton Trans. pp. 811-817.
Decurtins, S., Schmalle, H. W., Pellaux, R., Schneuwly, P. \& Hauser, A. (1996). Inorg. Chem. 35, 1451-1460.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gatteschi, D., Khan O., Miller, J. S. \& Palacio, F. (1991). Magnetic Molecular Materials. Dordrecht: Kluwer.
Guzmán, C., Castillo, O., Luque, A., Beitia, J. I. \& Román, P. (2001). Acta Cryst. E57, m407-m409.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Jenkins, H. D. B., Roobottom, H. K., Passmore, J. \& Glasser, L. (1999). Inorg. Chem. 38, 3609-3620.
Khan, O. (1993). Molecular Magnetism. VCH: New York.
Muga, I. (2001). Unpublished results.
Muga, I., Gutiérrez-Zorrilla, J. M., Luque, A., Román P. \& Lloret, F. (1997). Inorg. Chem. 36, 743-745.
Muga, I., Gutiérrez-Zorrilla, J. M., Vitoria, P., Luque, A., Insausti, M., Román, P. \& Lloret, F. (2000). Eur. J. Inorg. Chem. pp. 2541-2547.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst, A24, 351359.

Román, P., Guzmán-Miralles, C., Luque, A., Beitia, J. I., Cano, J., Lloret, F., Julve, M. \& Alvarez, S. (1996). Inorg. Chem. 35, 3741-3751.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Travnicek, Z., Smekal, Z. \& Marek, J. (1997). Z. Kristallogr. 212, 123-124.
Zelewsky, A. von (1996). Stereochemistry of Coordination Compounds. Chichester: Wiley.

[^0]: $D_{m}=1.86$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
 D_{m} measured by flotation
 Mo $K \alpha$ radiation
 Cell parameters from 25 reflections
 $\theta=7.8-12.1^{\circ}$
 $\mu=1.62 \mathrm{~mm}^{-1}$
 $T=293$ (2) K
 Prism, blue
 $0.3 \times 0.3 \times 0.2 \mathrm{~mm}$

